
OBJECTIVE-C
BEST PRACTICES
IN A TEAM ENVIRONMENT

by Rolin Nelson

Presented at JaxMUG March 2013

1Sunday, March 24, 13

GOALS

• Introduce / review Objective-C core features

• Review recent additions to Objective-C

• Discuss and propose Objective-C Styling that will lead to
better collaboration among team

2Sunday, March 24, 13

TOPICS

• Objective-C History

• Objective-C Primer and Recent Features

• Objective-C Styling Best Practices

• Xcode Configuration

• Summary

3Sunday, March 24, 13

INTRO

• Rolin Nelson

• Software Engineer with 23 years of overall experience

• Performed Middleware integration prior to mobile

• 5 years of mobile experience

• Developed native and hybrid iOS apps

• Developed in a large environment

4Sunday, March 24, 13

HISTORY OF OBJECTIVE-C

• Created by Brad Cox and Tom love in the early1980s

• Backward compatible to C

• In 1988, the NeXT company licensed Objective-C

• NeXT developed the AppKit (NSTextField, NSView, NS...)

• And the Foundation Kit (NSObject, NSString, etc.) libraries

• The GCC compiler was used to compile

5Sunday, March 24, 13

HISTORY OF OBJECTIVE-C

• Licensing limitations did not allow sharing of enhancements

• A GNU project was started to work on a free
implementation

• The new implementation of Cocoa(GNUStep) was based on
the OpenStep standard

• Shortly after acquiring NeXT (in1996), Apple used OpenStep
in its new Mac OS.

6Sunday, March 24, 13

HISTORY OF OBJECTIVE-C

• In 2007, in Mac OS X 10.5 a 2.0 version of Objective-C was
released

• Version 2.0 contain many breakthrough enhancements

7Sunday, March 24, 13

VERSION 2.0

• Garbage Collection (Only on Mac OS X)

• Syntax Enhancements

• Runtime Performance Improvements

• 64-Bit Support

8Sunday, March 24, 13

VERSION 2.0

• Properties

• Dot Syntax

• Fast Enumeration

• Optional Protocol

9Sunday, March 24, 13

OBJECTIVE-C PRIMER
SYNTAX

• Objective-C is a thin layer on top of C

• It is a strict superset of C

• You can compile any C program with an Objective-C compiler

• Objective-C derives it object-oriented syntax from the
Smalltalk language

• All other syntax are identical to C

10Sunday, March 24, 13

OBJECTIVE-C PRIMER
MESSAGE SENDING

• [obj method:argument];

• The Objective-C model of object-oriented is based on
message passing to object instances

• In Objective-C one doesn’t simply call a method; one sends a
message

• This allows the method called to be resolved at runtime (aka.
Dynamic Typing)

11Sunday, March 24, 13

OBJECTIVE-C PRIMER
MESSAGE SENDING

• The side effect is message-passing has no type checking

• When a message is sent to an object, an exception will be
thrown if the object does not implement a method that
respond

12Sunday, March 24, 13

OBJECTIVE-C PRIMER
INTERFACE IMPLEMENTATION

• Objective-C requires the interface and implementation of class
be in separate code blocks

• By convention, the interface is placed in a header file with a .h
suffix

• The implementation is placed in a code file with .m suffix

• Objective-C++, the suffix is .mm

13Sunday, March 24, 13

OBJECTIVE-C PRIMER
INTERFACE IMPLEMENTATION

Example of class interface file

@interface className : superClassName {
 // instance variables
}

 // class methods
+ classMethod1;
+ (return_type)classMethod2;
+ (return_type)classMethod3:(param1_type)param1_varName;

// instance methods
- (return_type)instanceMethod1:(param1_type)param1_varName :(param2_type)param2_varName;
- (return_type)instanceMethod2WithParameter:(param1_type)param1_varName param2_callName:
(param2_type)param2_varName;
@end

14Sunday, March 24, 13

OBJECTIVE-C PRIMER
INTERFACE IMPLEMENTATION

Example of class implementation file

@implementation className
+ (return_type)classMethod
{
 // implementation
}
- (return_type)instanceMethod
{
 // implementation
}
@end

15Sunday, March 24, 13

OBJECTIVE-C PRIMER
OBJECT INSTANTIATION

• Objective-C objects can be created by allocating an instance
and then initializing it

• Both steps are required for the object to be fully functional

16Sunday, March 24, 13

OBJECTIVE-C PRIMER
OBJECT INSTANTIATION

Example of instantiation with the default, no-parameter initializer

MyObject *o = [[MyObject alloc] init];

17Sunday, March 24, 13

OBJECTIVE-C PRIMER
OBJECT INSTANTIATION

Example of instantiation with a customer initializer

MyObject *o = [[MyObject alloc] initWithString:myString];

18Sunday, March 24, 13

OBJECTIVE-C PRIMER
OBJECT INSTANTIATION

Example of instantiation with the default, no-parameter initializer (short form)

MyObject *o = [MyObject new];

19Sunday, March 24, 13

OBJECTIVE-C PRIMER
OBJECT INSTANTIATION

Example of default initializer in implementation file

- (id)init {
 self = [super init];
 if (self) {
 // perform initialization of object here
 }
 return self;
}

Example of custom initializer in implementation file

- (id)initWithString:(NSString *)aString {
 self = [super init];
 if (self) {
 // perform initialization of object here
 self.title = aString;
 }
 return self;
}

20Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROTOCOL

• Multiple inheritance of specification

• Very similar to an interface in Java and C#

• Protocols can include both instance/class methods

• Protocols can include properties

• Informal/Formal Protocol

21Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROTOCOL

Example of protocol declaration

@protocol ABCDataSource <NSObject>
- (NSUInteger)numberOfSegments;
- (NSString *)titleForSegmentAtIndex:(NSUInter)segmentIndex;
@end

Example of protocol adoption

@interface MyClass : NSObject <ABCDataSource>
...
@end

@interface MyClass : NSObject <ABCDataSource, AnotherProtocol>
...
@end

22Sunday, March 24, 13

OBJECTIVE-C PRIMER
DYNAMIC TYPING

• An object can be sent a message that is not specified in its
interface

• This flexible allows an object to capture/forward messages

• This pattern is known as message forwarding or delegation

23Sunday, March 24, 13

OBJECTIVE-C PRIMER
DYNAMIC TYPING

Examples of dynamic typing

Foo may be of any class.
- (void)setMyValue:(id)foo;

Foo may be an instance of any class that conforms to the NSCopying protocol.
- (void)setMyValue:(id<NSCopying>)foo;

Foo must be an instance of the NSNumber class.
- (void)setMyValue:(NSNumber *)foo;

Foo must be an instance of the NSNumber class and must conform to the
NSCopying protocol
- (void)setMyValue:(NSNumber<NSCopying> *)foo;

24Sunday, March 24, 13

OBJECTIVE-C PRIMER
DYNAMIC TYPING

@interface MyClass : NSObject <SomeProtocol>
...

- (void)setMyValue:(id)foo
{
 if ([foo isKindOfClass:[NSNumber class]]) {
 // handle
 }
 else if ([foo isKindOfClass:[NSString class]]) {
 // handle
 }
}

...

@end

25Sunday, March 24, 13

OBJECTIVE-C PRIMER
FORWARDING

• Objective-C permits the sending of any message to an object

• A runtime error doesNotRecognizeSelector: will be
generated when an object receives an unrecognized message

• Objects may override the default behavior by implementing
the forwardInvocation: method in NSObject.

26Sunday, March 24, 13

OBJECTIVE-C PRIMER
FORWARDING

@implementation MyClass : NSObject <SomeProtocol>
...

- (void)forwardInvocation:(NSInvocation)invocation
{
 SEL aSelector = [invocation selector]
 if ([otherObject respondsToSelector:aSelector]) {
 [invocation invokeWithTarget:otherObject];
 }
 else {
 [super forwardInvocation:invocation];
 }
}

...

@end

27Sunday, March 24, 13

OBJECTIVE-C PRIMER
CATEGORIES

• Objective-C was designed with the ability to maintain large
code base

• Categories allow large code base to be broken into smaller
pieces, known as Categories

• The methods within a category are added to a class at run-
time

28Sunday, March 24, 13

OBJECTIVE-C PRIMER
CATEGORIES

• Categories permit the programmer to add methods to an
exiting class

• The added methods are indistinguishable from the existing
methods

• The added methods have full access to instance and private
variables

• Categories can even override existing methods. (Bug fixes)

29Sunday, March 24, 13

OBJECTIVE-C PRIMER
CATEGORIES

Example of category declaration

...

@interface ExistingClass (MyAdditions)
- (NSUInteger)nameOfNewMethodAdded;
@end

Example of category implementation

@implementation ExistingClass (MyAdditions)
...

- (NSUInteger)nameOfNewMethodAdded {
 NSUInteger someValue
 ...
 return someValue + existingValue;
}

@end

30Sunday, March 24, 13

OBJECTIVE-C PRIMER
GARBAGE COLLECTION

• Garbage Collection was added to Objective-C in Mac OS X
10.5 (Leopard)

• It was deprecated in Mac OS X 10.8 in favor of ARC
(Automatic Reference Counting)

• It never existed in iOS, due to the performance

31Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROPERTIES

• Properties are public instance variables

• Properties may be defined with storage modifiers

• In non-ARC environment, modifiers (assign, copy or retain)

• In ARC environment, modifiers (weak or strong) instead of
retain

32Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROPERTIES

• Additionally, properties may declare “readonly”

• Properties may be declared with “nonatomic”

• Nonatomic removes the wrapping lock used to access the
variable value (faster without lock)

• The lock does not guarantee ordering (only fully set or read
values)

• Default access is “atomic”

33Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROPERTIES

@interface Person : NSObject {

@public
 NSString *name;
@private
 int age;
}

@property(copy) NSString *name;
@property(readonly) int age;

- (id)initWithAge:(int)age;

@end

34Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROPERTIES

@implementation Person
@synthesize name=_name;

- (id)initWithAge:(int)initAge {
 self = [super init];
 if (self) {
 age = initAge; // NOTE: direct instance variable assignment, not property setter
 }
 return self;
}

- (int)age {
 return age;
}
@end

35Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROPERTIES AUTOSYNTHESIS

• When using Xcode 4.4 or newer with clang 3.1 (Apple LLVM
compiler 4.0)

• Properties are implicitly synthesized unless explicitly declared

...

@property(copy) NSString *name;
...

@implementation Person
@synthesize name=_name; // This line is no longer necessary
...

@end

36Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROPERTIES AUTOSYNTHESIS

• Auto synthesis is not performed for properties defined in a
protocol

...

@protocol someProtocol <NSObject>
@property (nonatomic, strong) NSString *name;
@end
...

37Sunday, March 24, 13

OBJECTIVE-C PRIMER
PROPERTIES

• The @dynamic keyword may be used to delay the addition of
the setter/getter or autosynthesis

• Backing instance variables are created by the property
variables without ever being declared in the class interface

• Very useful from private properties

38Sunday, March 24, 13

OBJECTIVE-C PRIMER
FAST ENUMERATION

• Instead of using the NSEnumeration class or indexes use fast
enumeration

• Fast enumeration provides better performance

• It does pointer arithmetic to traverse a collection

39Sunday, March 24, 13

OBJECTIVE-C PRIMER
FAST ENUMERATION

...

// Using NSEnumerator
NSEnumerator *enumerator = [thePeople objectEnumerator];
Person *p;

while ((p = [enumerator nextObject]) != nil) {
 NSLog(@"%@ is %i years old.", [p name], [p age]);
}

// Using indexes
for (int i = 0; i < [thePeople count]; i++) {
 Person *p = [thePeople objectAtIndex:i];
 NSLog(@"%@ is %i years old.", [p name], [p age]);
}

// Using fast enumeration
for (Person *p in thePeople) {
 NSLog(@"%@ is %i years old.", [p name], [p age]);
}

...

40Sunday, March 24, 13

LATEST OBJECTIVE-C FEATURES
FEATURES

• ARC - Automatic Reference Counting

• Literal Object Creation

• Subscripting Collections

41Sunday, March 24, 13

LATEST OBJECTIVE-C FEATURES
ARC - AUTOMATIC REFERENCE

COUNTING

• Code to maintain reference counts are inserted in the
appropriate places during compilation time

• More efficient that garbage collection since a separate thread
is not required to manage the retain counts.

42Sunday, March 24, 13

LATEST OBJECTIVE-C FEATURES
LITERAL OBJECT CREATION

• Previously, only string objects could be created literally

• NSString *aString = @"This is a new string";

• Now, arrays, dictionaries and numbers can be created

• NSArray *anArray = @[anObject];

• NSDictionary *aDictionary = @{@"key":anObject};

• NSNumber *aNumber = @(anInt);

43Sunday, March 24, 13

LATEST OBJECTIVE-C FEATURES
SUBSCRIPTING COLLECTIONS

...

// Example without subscripting:

id object1 = [someArray objectAtIndex:0];
id object2 = [someDictionary objectForKey:@"key"];
[someMutableArray replaceObjectAtIndex:0 withObject:object3];
[someMutableDictionary setObject:object4 forKey:@"key"];

// Example with subscripting:

id object1 = someArray[0];
id object2 = someDictionary[@"key"];
someMutableArray[0] = object3;
someMutableDictionary[@"key"] = object4;

...

44Sunday, March 24, 13

OBJECTIVE-C STYLING
GOALS

• NOT to present an ideal style representation

• A style that will make it easy to refactor

• Other members are able to modify each others code

• Make it easy for team members to code review others code

• Team members should agree and compromise on styles

• A plan and document should be made going forward

45Sunday, March 24, 13

OBJECTIVE-C STYLING
SKEPTICAL

• Most programmers respond very negatively to this idea

• They believe this is a complete waste of time

• They are too busy

• Besides, who will pay for the additional cost?

• Code already exist, and it is not broken, why should I rework?

46Sunday, March 24, 13

OBJECTIVE-C STYLING
WHY

• In a large organization where multiple developer may modify
the same source file to code different fixes, style is very
important

• Existing sources files should be lazily updated

• That is, source should only be brought to standard if modified
during code fix

• If some sort of code merging(manual or auto) procedure is
used, it will be simpler if the style was standardized

• In the long run, this will save cost with cleaner code
47Sunday, March 24, 13

OBJECTIVE-C STYLING
SPACING

• When a keyword is preceded by an opening parenthesis,
there should be a space between the keyword and
parenthesis.

• When a non-keyword is preceded by an opening
parenthesis, there should NOT be a space between the
keyword and parenthesis.

Recommended Not Recommended

if (YES) if(YES)

myFunc(myFunc (

48Sunday, March 24, 13

OBJECTIVE-C STYLING
SPACING

• Use 2 newlines between major definitions (i.e. classes,
protocols).

• Use a newline between code paragraphs (i.e. methods).

• Use 4 spaces instead of tabs for indentation.

• No whitespace after colons and before expressions for
method parameters.

• Place a single space after // for comments (Not required for
commenting out code).

49Sunday, March 24, 13

OBJECTIVE-C STYLING
SPACING

• No space before comma, however, leave one space after a
comma.

• For pointer types, always put a space between the type and
the asterisk.

• When type casting, put a space after the closing parenthesis.

 NSString *foo = @"Hello";
 NSString *abc = (NSString *) [obj func];}

50Sunday, March 24, 13

OBJECTIVE-C STYLING
CURLY BRACES

• Opening curly braces should always be presented on the
same line as the construct to which they belong -- NOT
wrapped underneath.

Recommended Not Recommended

if (YES) {
 [obj func];
}

if (YES)
{
 [obj func];
}

51Sunday, March 24, 13

OBJECTIVE-C STYLING
IF/ELSE BLOCKS

• If statements should always use curly braces to enclose their
contents, even when there is only a single statement.

• If statements should always be written using multiple lines,
even when there is only a single enclosed statement.

• Similar rules applies for while, do..while and for loops.

Recommended Not Recommended
if (YES) {
 [obj func];
}

if (YES)
 [obj func];

if (YES) [obj func];

52Sunday, March 24, 13

OBJECTIVE-C STYLING
IF/ELSE BLOCKS

• A single space should always be placed between the “if ”
keyword and the opening parenthesis.

• A single space should always be placed between the closing
parenthesis and the opening curly brace.

Recommended Not Recommended

if (YES) {
 [obj func];
}

if (YES){
 [obj func];
}

53Sunday, March 24, 13

OBJECTIVE-C STYLING
IF/ELSE BLOCKS

• No space between the opening/closing parentheses and the
conditional expression.

Recommended Not Recommended

if (YES) {
 [obj func];
}

if (YES) {
 [obj func];
}

54Sunday, March 24, 13

OBJECTIVE-C STYLING
IF/ELSE BLOCKS

• More complex if..else block should be formatted as follows.

Recommended Not Recommended

if ([obj isThisTrue:1]) {
 [obj func1];
}
else if ([obj isThisTrue:2]) {
 [obj func2];
}
else {
 [obj func3];
}

if ([obj isThisTrue:1])
{
 [obj func1];
}
else if ([obj isThisTrue:2])
{
 [obj func2];
}
else
{
 [obj func3];
}

55Sunday, March 24, 13

OBJECTIVE-C STYLING
IF/ELSE BLOCKS COMMENTS

• Comments for an if-statement as a whole should be placed
directly above the if part.

• Comments for each condition should be placed at the top of
the respective code blocks.

• Include a blank line if the comment does not apply
exclusively to the first code paragraph within the block.

56Sunday, March 24, 13

OBJECTIVE-C STYLING
IF/ELSE BLOCKS COMMENTS

• Comments for an if-statement as a whole should be placed
directly above the if part.

• Comments for each condition should be placed at the top of
the respective code blocks.

• Include a blank line if the comment does not apply
exclusively to the first code paragraph within the block.

57Sunday, March 24, 13

OBJECTIVE-C STYLING
IF/ELSE BLOCKS COMMENTS

...

// Routing to the correct handler.
if (input == kKeyboard) {
 // If the input is the keyboard, do something.

 [obj func1];
}
else if (input == kMouse) {
 // If the input is the mouse, do something else.

 [obj func2];
}
else {
 // If the input is something else, log error.

 NSLog(@”Error!”);
}

...

58Sunday, March 24, 13

OBJECTIVE-C STYLING
WRAPPING LONG LINES

• Line lengths should have a hard limit of 120 characters

• When wrapping, try to keep the most specific things
grouped into single lines.

• Nest wrapping sections if necessary.

• If possible, align parameters on colon.

• Otherwise, align on the left edge of the parameters.

59Sunday, March 24, 13

OBJECTIVE-C STYLING
WRAPPING LONG LINES

...

[thisIsMyVeryDescriptiveInstanceName thisIsAFunc:@”one”
 two:@”two”
 three:@”three”];
...

• If possible, align parameters on colon.

60Sunday, March 24, 13

OBJECTIVE-C STYLING
WRAPPING LONG LINES

...

[shortVar thisIsAFunc:@”one”
 longerSecondParamThatMakesColonAlignmentImpractical:@”two”
 three:@”three”];
...

• Aligning on the left edge of the parameters.

61Sunday, March 24, 13

OBJECTIVE-C STYLING
WRAPPING LONG LINES

...

[thisIsMyVeryDescriptiveInstanceName
 thisIsAFunc:@”one”
 two:@”two”
 three:@”this three is a much longer string, wrapped differently”];

...

• Wrap by indenting 4 spaces because of longer parameter.

62Sunday, March 24, 13

OBJECTIVE-C STYLING
WRAPPING LONG LINES

...

func(1 + (1.0f / 100.0f),
 @”hello”,
 [NSString stringWithFormat:@”hello %@! this is a longer string”,
 @”world”);

for (int index = [obj getStartingIndexOfSomething];
 index < numItems;
 index++) {
 [obj func];
}

...

• Aligning on the opening parenthesis

63Sunday, March 24, 13

OBJECTIVE-C STYLING
WRAPPING LONG LINES

...

if ([obj isThisTrue] ||
 [obj iDontThinkThisWillReturnTrueButItMight] ||
 [obj hmmWhatWillThisDo] && [obj something]) {
 [obj func];
}

...

• Indent with an extra 4 spaces to avoid visual ambiguity

64Sunday, March 24, 13

OBJECTIVE-C STYLING
METHODS

...

- (void)funcThatDoesSomething:(int)value1 foo:(NSString *)value2

...

• Include space between the method type (+/-) indicator and
first character of the method name

• Don’t put spaces after the colons for method parameters

65Sunday, March 24, 13

OBJECTIVE-C STYLING
METHODS

• Keep methods short and specific.

• Break up longer methods or methods with multiple logical
concepts.

• In general, avoid multiple return statements.

• Add a comment // MULTIPLE RETURNS at the top of
method when multiple returns can’t avoided.

• A comment is not necessary for if-statement early exit
return.

66Sunday, March 24, 13

OBJECTIVE-C STYLING
METHODS

...

- (float)funcDoesSomething:(int)x {
 if (x == 0) {
 return 0.0f;
 }

 float val = 5.0f / x;
 NSLog(@”val: %f”, val);
 return val;
}

...

• if-statement early exit return

67Sunday, March 24, 13

OBJECTIVE-C STYLING
CLASSES

• Don’t indent access modifiers (public, protected, private)

• List sections of access modifiers in the following order:
public, protected and private.

• Use a newline between sections of different access modifiers

• Pad the properties and prototypes sections, each with a
newline

68Sunday, March 24, 13

OBJECTIVE-C STYLING
CLASSES

• List properties before prototypes

• Alphabetize each section (per access level, properties and
method prototypes).

• If there are other declarations (i.e. extern, static) separate
them from the class declaration with 2 lines.

69Sunday, March 24, 13

OBJECTIVE-C STYLING
CLASSES

#import <UIKit/UIKit.h>

extern int zero;
extern int foo;

@interface SomeClass (NSObject) {
@protected
 int one;
 NSString *two;

@private
 int three;
}

@property (nonatomic, assign) int one;

- (void)doSomething;

@end

70Sunday, March 24, 13

OBJECTIVE-C STYLING
CLASSES

• Use #pragma mark to organize methods into related
sections.

• Alphabetize methods within related sections.

• Don’t override methods only to provide same code as the
default implementation.

71Sunday, March 24, 13

OBJECTIVE-C STYLING
CLASSES

...

// ***
#pragma mark -
#pragma mark UIAlertViewDelegate Methods

- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:(NSInteger)buttonIndex {
 ...
}

72Sunday, March 24, 13

OBJECTIVE-C STYLING
VARIABLES

• Always use good variables, methods and class names.

• Don’t use abbreviations or acronyms except where the
represented object is very commonly known by its
abbreviation (i.e. ssn, fax, id).

73Sunday, March 24, 13

OBJECTIVE-C STYLING
TODOS

• Use 3 levels of todos to help improve development.

• One can’t tackle all issues in a large and complicated system,
simultaneously.

74Sunday, March 24, 13

OBJECTIVE-C STYLING
TODOS

• Use the following for todo items that should be taken care of
in the future, but are relatively low priority.

...

// TODO(username): This is my thing to do.

...

75Sunday, March 24, 13

OBJECTIVE-C STYLING
TODOS

• Use the following for todo items that are very important to
get done soon.

• Warning messages will ensure that people are aware of
these items.

...

#warning TODO(username): This is my very important thing to do.

...

76Sunday, March 24, 13

OBJECTIVE-C STYLING
TODOS

• Use the following for todo items to complete before you
even build again.

• Useful when refactoring or making changes across a wide
span of code.

• The build will fail, so don’t checkin into source code.

...

#error Label optional

...

77Sunday, March 24, 13

OBJECTIVE-C STYLING
DEPRECATION

• Use deprecation to phase out methods you wish to remove
in future releases.

...

- (void)funcThatDoesSomething:(int)value1 DEPRECATED_ATTRIBUTE;

...

78Sunday, March 24, 13

OBJECTIVE-C STYLING
GENERAL CODING

• Avoid conditional statement like to x == YES, x == NO, x
== nil, etc.

• Use x or !x instead.

• Be deliberate about adding methods to classes scope.

• If in doubt, add them as private to keep scope as tight as
possible.

79Sunday, March 24, 13

OBJECTIVE-C STYLING
GENERAL CODING

• Use NSAssert to actively enforce cases that should be
programmatically impossible.

• Comment the important stuff in your code.

• NSAsserts can be disabled for Release by defining
NS_BLOCK_ASSERTIONS=1 in the “Other C Flags”
compiler options.

...

 NSAssert(someValueIsTrue, @”Something is very wrong”);

...

80Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES

• .h files should only contain information vital to the public
interface.

• Refrain from importing a ton of stuff in a .h header file.

• Use forward declarations as necessary (with the exception of
major libraries such as UIKit and Foundation).

• An import is needed for inheritance and protocol
implementations.

81Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES

#import <UIKit/UIKit.h>

#import "SomeProtocolThisClassImplements.h"

@class SomeClassINeedForAFieldDecl;
@protocol SomeProtocolAFieldImplements;

@interface MyClass : NSObject <SomeProtocolThisClassImplements> {
 SomeClassINeedForAFieldDecl *myField;
 id <SomeProtocolAFieldImplements> *anotherField;
}

@end

82Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES

• .m files should start with the private interface definition.

• Use className() construct vs className(private).

• ClassName() lets you define private properties.

@interface MyClass ()

@property (nonatomic, retain) id myPrivateField;

- (void)somePrivateMethod:(int)param;

@end

83Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES .M

1.File comments (creation date, copyright info)

2.Corresponding header import

3.Other alphabetized header imports

4.Static declarations

5.Private interface declaration

6.Implementation declaration

Sections of .m

84Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES .M

//
// This is a file comment with basic copyright info.
//

#import "MyClass.h"

#import "AnotherClass.h"
#import "DifferentClass.h"
#import "YetAnotherClass.h"

static const int kConstantDecl = 5;

// ***
#pragma mark -
#pragma mark Private Declaration

@interface MyClass ()

@property (nonatomic, retain) NSString *aPrivateProperty;
@property (nonatomic, retain) NSString *differentPrivateProperty;

- (void)doesSomething;
- (void)processesStuff;

@end

...

85Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES .M

...

// ***
#pragma mark -
#pragma mark Implementation

@implementation MyClass

@synthesize aPrivateProperty;
@synthesize differentPrivateProperty;

...

@end

86Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES .M

• Delegate and subclass method override sections should be
listed under pragma marks

• Listing of pragmas may be alphabetized by the name of the
protocol or class being overridden

• Pragma name should include “Methods” or “Overrides” as a
suffix

• Pragma examples “UIAlertViewDelegate Methods” or
“UIViewController Overrides”

87Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES PRAGMA

...

// ***
#pragma mark -
#pragma mark UIAlertViewDelegate Methods

- (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:(NSInteger)buttonIndex {
 ...
}

// ***
#pragma mark -
#pragma mark UIViewController Overrides

- (void)viewWillAppear:(BOOL)animated {
 ...
}

- (void)viewWillDisappear:(BOOL)animated {
 ...
}

...

88Sunday, March 24, 13

OBJECTIVE-C STYLING
SOURCE FILES PRAGMA

• In large projects, pragmas allow you to have a bird’s eye
view of the code.

89Sunday, March 24, 13

OBJECTIVE-C STYLING
XCODE PREFERENCES

• Under Text Editing, enable “Page guide”

• Specify between 100 and120 as column width

• Under Indentation, select “Prefer indent using: Spaces”

• Specify Tab width and Indent width as 4 spaces

• Configure Syntax-aware indenting to your liking

90Sunday, March 24, 13

OBJECTIVE-C STYLING
SUMMARY

• We’ve reviewed useful Objective-C features

• We’ve gone over some best coding practices

• We’ve discussed Xcode settings to assist with the standard

• We’ve discussed how the standard is not ideal but a
compromise between the parties

• The standard should be maintained in a document

91Sunday, March 24, 13

OBJECTIVE-C STYLING

Questions ?

92Sunday, March 24, 13

